2,212 research outputs found

    Polynomial Interrupt Timed Automata

    Full text link
    Interrupt Timed Automata (ITA) form a subclass of stopwatch automata where reachability and some variants of timed model checking are decidable even in presence of parameters. They are well suited to model and analyze real-time operating systems. Here we extend ITA with polynomial guards and updates, leading to the class of polynomial ITA (PolITA). We prove the decidability of the reachability and model checking of a timed version of CTL by an adaptation of the cylindrical decomposition method for the first-order theory of reals. Compared to previous approaches, our procedure handles parameters and clocks in a unified way. Moreover, we show that PolITA are incomparable with stopwatch automata. Finally additional features are introduced while preserving decidability

    Teachers developing assessment for learning: impact on student achievement

    Get PDF
    While it is generally acknowledged that increased use of formative assessment (or assessment for learning) leads to higher quality learning, it is often claimed that the pressure in schools to improve the results achieved by students in externally-set tests and examinations precludes its use. This paper reports on the achievement of secondary school students who worked in classrooms where teachers made time to develop formative assessment strategies. A total of 24 teachers (2 science and 2 mathematics teachers, in each of six schools in two LEAs) were supported over a six-month period in exploring and planning their approach to formative assessment, and then, beginning in September 1999, the teachers put these plans into action with selected classes. In order to compute effect sizes, a measure of prior attainment and at least one comparison group was established for each class (typically either an equivalent class taught in the previous year by the same teacher, or a parallel class taught by another teacher). The mean effect size was 0.32

    Regular Combinators for String Transformations

    Full text link
    We focus on (partial) functions that map input strings to a monoid such as the set of integers with addition and the set of output strings with concatenation. The notion of regularity for such functions has been defined using two-way finite-state transducers, (one-way) cost register automata, and MSO-definable graph transformations. In this paper, we give an algebraic and machine-independent characterization of this class analogous to the definition of regular languages by regular expressions. When the monoid is commutative, we prove that every regular function can be constructed from constant functions using the combinators of choice, split sum, and iterated sum, that are analogs of union, concatenation, and Kleene-*, respectively, but enforce unique (or unambiguous) parsing. Our main result is for the general case of non-commutative monoids, which is of particular interest for capturing regular string-to-string transformations for document processing. We prove that the following additional combinators suffice for constructing all regular functions: (1) the left-additive versions of split sum and iterated sum, which allow transformations such as string reversal; (2) sum of functions, which allows transformations such as copying of strings; and (3) function composition, or alternatively, a new concept of chained sum, which allows output values from adjacent blocks to mix.Comment: This is the full version, with omitted proofs and constructions, of the conference paper currently in submissio

    Weak Singular Hybrid Automata

    Full text link
    The framework of Hybrid automata, introduced by Alur, Courcourbetis, Henzinger, and Ho, provides a formal modeling and analysis environment to analyze the interaction between the discrete and the continuous parts of cyber-physical systems. Hybrid automata can be considered as generalizations of finite state automata augmented with a finite set of real-valued variables whose dynamics in each state is governed by a system of ordinary differential equations. Moreover, the discrete transitions of hybrid automata are guarded by constraints over the values of these real-valued variables, and enable discontinuous jumps in the evolution of these variables. Singular hybrid automata are a subclass of hybrid automata where dynamics is specified by state-dependent constant vectors. Henzinger, Kopke, Puri, and Varaiya showed that for even very restricted subclasses of singular hybrid automata, the fundamental verification questions, like reachability and schedulability, are undecidable. In this paper we present \emph{weak singular hybrid automata} (WSHA), a previously unexplored subclass of singular hybrid automata, and show the decidability (and the exact complexity) of various verification questions for this class including reachability (NP-Complete) and LTL model-checking (PSPACE-Complete). We further show that extending WSHA with a single unrestricted clock or extending WSHA with unrestricted variable updates lead to undecidability of reachability problem

    When images work faster than words: The integration of content-based image retrieval with the Northumbria Watermark Archive

    Get PDF
    Information on the manufacture, history, provenance, identification, care and conservation of paper-based artwork/objects is disparate and not always readily available. The Northumbria Watermark Archive will incorporate such material into a database, which will be made freely available on the Internet providing an invaluable resource for conservation, research and education. The efficiency of a database is highly dependant on its search mechanism. Text based mechanisms are frequently ineffective when a range of descriptive terminologies might be used i.e. when describing images or translating from foreign languages. In such cases a Content Based Image Retrieval (CBIR) system can be more effective. Watermarks provide paper with unique visual identification characteristics and have been used to provide a point of entry to the archive that is more efficient and effective than a text based search mechanism. The research carried out has the potential to be applied to any numerically large collection of images with distinctive features of colour, shape or texture i.e. coins, architectural features, picture frame profiles, hallmarks, Japanese artists stamps etc. Although the establishment of an electronic archive incorporating a CBIR system can undoubtedly improve access to large collections of images and related data, the development is rarely trouble free. This paper discusses some of the issues that must be considered i.e. collaboration between disciplines; project management; copying and digitising objects; content based image retrieval; the Northumbria Watermark Archive; the use of standardised terminology within a database as well as copyright issues

    Optimal Reachability in Divergent Weighted Timed Games

    Full text link
    Weighted timed games are played by two players on a timed automaton equipped with weights: one player wants to minimise the accumulated weight while reaching a target, while the other has an opposite objective. Used in a reactive synthesis perspective, this quantitative extension of timed games allows one to measure the quality of controllers. Weighted timed games are notoriously difficult and quickly undecidable, even when restricted to non-negative weights. Decidability results exist for subclasses of one-clock games, and for a subclass with non-negative weights defined by a semantical restriction on the weights of cycles. In this work, we introduce the class of divergent weighted timed games as a generalisation of this semantical restriction to arbitrary weights. We show how to compute their optimal value, yielding the first decidable class of weighted timed games with negative weights and an arbitrary number of clocks. In addition, we prove that divergence can be decided in polynomial space. Last, we prove that for untimed games, this restriction yields a class of games for which the value can be computed in polynomial time

    A Generalised Twinning Property for Minimisation of Cost Register Automata

    Get PDF
    Weighted automata (WA) extend finite-state automata by associating with transitions weights from a semiring S, defining functions from words to S. Recently, cost register automata (CRA) have been introduced as an alternative model to describe any function realised by a WA by means of a deterministic machine. Unambiguous WA over a monoid (M, ⊗) can equivalently be described by cost register automata whose registers take their values in M, and are updated by operations of the form x: = y ⊗ c, with c ∈ M. This class is denoted by CRA⊗c(M). We introduce a twinning property and a bounded variation property parametrised by an integer k, such that the corresponding notions introduced originally by Choffrut for finite-state transducers are obtained for k = 1. Given an unambiguous weighted automaton W over an infinitary group (G, ⊗) realizing some function f, we prove that the three following properties are equivalent: i) W satisfies the twinning property of order k, ii) f satisfies the k-bounded variation property, and iii) f can be described by a CRA⊗c(G) with at most k registers. In the spirit of tranducers, we actually prove this result in a more general setting by considering machines over the semiring of finite sets of elements from (G, ⊗): the three properties are still equivalent for such finite-valued weighted automata, that is the ones associating with words subsets of G of cardinality at most ℓ, for some natural ℓ. Moreover, we show that if the operation ⊗ of G is commutative and computable, then one can decide whether a WA satisfies the twinning property of order k. As a corollary, this allows to decide the register minimisation problem for the class CRA⊗c(G). Last, we prove that a similar result holds for finite-valued finite-state transducers, and that the register minimisation problem for the class CRA.c (B*) is Pspace-complete

    Modelling and Analysing Mixed Reality Applications

    Get PDF
    International audienceMixed reality systems overlay real data with virtual information in order to assist users in their current task. They generally combine several hardware components operating at different time scales, and software that has to cope with these timing constraints. MIRELA, for MIxed REality LAnguage, is a framework aimed at modelling, analysing and implementing systems composed of sensors, processing units, shared memories and rendering loops, communicating in a well-defined manner and submitted to timing constraints. The framework is composed of (i) a language allowing a high level, and partially abstract, specification of a concurrent real–time system, (ii) the corresponding semantics, which defines the translation of the system to concrete networks of timed automata, (iii) a methodology for analysing various real-time properties, and (iv) an implementation strategy. We present here a summary of several of our papers about this framework, as well as some recent extensions concerning probability and non–deterministic choices
    • 

    corecore